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There has been confusion for many years over the origin of the a/H term in the expression 
for the approach to saturation, M/M.=l-a/H - b/H2 + cH, observed in many ferromagnetic 
materials. A calculation is presented which suggests that residual internal strain contributes 
Significantly to this term. Internal strain has previously been thought to contribute only to 
the b/H2 term. It is further suggested that the a/H term has been overemphasized and has 
validity only over a limited region of the H axis. The effect of internal strain is deduced from 
consideration of a problem concerning nonhydrostatic strains induced in slightly porous mag
netic material subject to external hydrostatic pressure. A comparison with recent experi
mental work supports the calculation. 

I. INTRODUCTION (2) 

There has been continued interest for many years 
in explaining the various terms which occur in the 
expression for the approach to saturation observed 
experimentally in many ferromagnetic materials: 

M a b 

where the first part is due to crystalline anisotropy, 1 

and the second part, derived by Becker and Polley, 2 

is considered to be the influence of internal strain 
on the approach to saturation. 

M=l- Y -[j2+cH. 
s 

(1) 

The cH term has been adequately explained in terms 
of paraprocesses. The constant in the b/H2 term 
has been shown to be 

The origin of the a/H term is not well under
stood. Calculations by Brown3 have shown that 
dislocation effects can contribute to this term, 
while Neel4 has concluded that stray fields due 
to nonuniform magnetization may bring about forces 
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which would contribute to this term. The origin 
of this term has been investigated experimentally 
by Parfenov and Voroshilov.5 One significant ob
servation noted by these authors was that the con -
stants a and b varied similarly with increasing 
internal strain in the magnetic material. However, 
they were unable to substantiate either theory and 
concluded by still questioning the nature of the 
alB term. 

The present calculation was motivated by a re
cent experimental investigation concerning the mag
netic properties of slightly porous poly crystalline 
ferromagnetic materials when subject to external 
hydrostatic pressure. 6 The porous material, in
itially strain -free, experiences nonhydrostatic 
strain in the vicinity of pores when an external hy
drostatic pressure is applied. These nonhydro
static strain regions, coupled with the magneto
elastic properties of the material, will significant
ly affect the magnetization curve. In that work 
(Ref. 6) the magnetization exhibited a strong linear 
dependence on the variable pi B in the approach to 
saturation region of the curve. This vividly illus
trates the alB dependence in Eq. (1) and suggests 
an origin of the constant a. 

Specific objectives of the present calculations 
are the following: 

(a) to propose a model for the magneto-elastic 
behavior of the porous material which predicts 
the plB dependence of the magnetization and de
termines the region of the magnetization curve for 
which the dependence is valid. Results are com
pared with the experimental work of Ref. 6; 

(b) to suggest that the calculation in (a) is rele
vant in cases where there is no external applied 
pressure, but where there are residual internal 
strains due to internal defects. This would imply 
that internal strain contributes to the alh depen
dence. It was previously thought to contribute only 
to the blB2 dependence. The primary conclusion 
is that the alB term is a myth, or has at least been 
overemphasized. It has apprOximate validity in a 
limited range (B neither too large nor too small) 
of the magnetization curve; 

(c) to interpret previous observations (primarily 
those of Parfenov and Voroshilov) which have not 
been understood in terms of the conclusion of (b). 
These interpretations lend further support to the 
conclusion. 

This article is presented in the following order: 
In Sec. IT a model for the magnetic behavior of the 
porous material subject to external hydrostatic 
pressure is formulated and a sufficient magnetic 
energy expreSSion derived. In Sec. ill a series 
solution for the magnetization curve is obtained 
but is found poorly convergent in the region of 
interest. A complete numerical solution is pre
sented in Sec. IV. In Sec. V the results of Secs. 

ill and IV are compared with the experimental work 
of Ref. 6. In Sec. VI extension of this calculation 
to the magnetic behavior of material with r~sidual 
internal strain is suggested and discussed. 

II. MODEL FOR POROUS MATERIAL 

The first problem, as stated in the Introduction, 
is to predict the magnetization curve in the ap
proach to saturation region for porous polycrystal
line ferromagnetic material subject to external 
hydrostatic pressure. Porosities contemplated are 
less than 5%. This is consistent with the work of 
Ref. 6. Generality is not important here since the 
ultimate goal is to infer the origin of the alH term 
in actual ferromagnetic material from the results 
of the porosity problem. 

The model used to describe the porous material 
will be developed from the following assumption: 
The average behavior of an aggregate of random
Sized and -shaped cavities can be represented by 
the behavior of a spherical cavity in an infinite 
isotropic elastic medium. This assumption has 
been used fruitfully in obtaining the dependence of 
elastic moduli on porosity in polycrystalline ma
terial. 7,8 An excellent photomicrograph of the sit
uation contemplated is shown on p. 218 of Smit and 
Wijn.9 Illustrated is 5% porous manganese-zinc 
ferrite. 

To obtain the magnetization curve in the region 
of interest, a magnetic energy expression which 
adequately describes the material is required. The 
total energy is usually written 10 

(3) 

The first term, EH = - Ms' ii, is the interaction en
ergy with the external applied field. The remaining 
four terms are, respectively, the magneto-elastic, 
crystalline anisotropy, exchange, and demagnetizing 
energies. The magneto-elastic energy will be ob
tained first. The last three terms are ignored in 
the present work. Justification is offered later in 
this section. 

To obtain an expression for the magneto-elastic 
energy, knowledge of the strain distribution about 
a spherical cavity is required. ll Referring to Fig. 
1, the strain field at a distance r from a cavity of 
radius a, subject to a limiting boundary condition 
of hydrostatic pressure P and zero traction on the 
cavity surface, is 

1 P as x!£ 
eli = - "3K TP6 1J + 4/-L ? 3 - 61} • (4) 

KT is the compressibility and /-L is the shear mod
ulus. It should be mentioned that this approach 
ignores the magnetostrictive property of the ma
terial. The strain error incurred by this approxi
mation is small. Magnetostriction strains are on 
the order of 10,5. Strains conSidered in this work 
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a 

FIG. 1. Spherical cavity of radius a. M. cos1/! is the 
magnetization in the direction of the applied field at the 
spherical coordinate (r, e, <I». There is azimuthal sym
metry. 

are greater than 10-3
• 

The magneto-elastic energy expression for the 
isotropic material is obtained by averaging the 
single-crystal expression 

Erne = b1 «(}~e ll + Q!~e22 + (}~e 33) 

+ 2b2(Q!1 Q!2e 12 + Q!2Q!Se 23 + Q!2Q!le 21) (5) 

over random crystal orientation using Eq. (4) for 
the strain components. 12 This average assumes 
fixed strains with magnetization in fixed axis. The 
result is 

3 BP a3 
2 

Erne =-4 - -::! cos (I/! + ()) , 
Jl r 

(6) 

where B= ~ bl + t b2 • The angles are shown in Fig. 1. 
Justification for ignoring the remaining energy 

terms in Eq. (3) is as follows: Consider the crys
talline anisotropy energy first. Since the terms 
in the total energy expression are additive, the con
tribution of the anisotropy energy to the magnetiza
tion in the approach to saturation region may be 
superimposed. This was done by Parfenov and 
Voroshilov using the expression 

M 8 K2 
M=1- 105 R2M 2+'" 

s s 
(7) 

derived by Akulov. 1 This will not be done in the 
present work. Although this refinement would im
prove the calculation, it tends to obscure the pri
mary objective of the paper. 

The exchange energy is commonly expressed in 
the form 

[ - 2 - 2 - 2 EexA ('VQ!1) + ('VQ!2) + ('VQ!3) ] , 

where A is the exchange constant. The exchange 
energy will be on the order of A/ a2

, where a is 
the dimension of the spherical cavity. A rough esti
mate for YIG from molecular field theory is 
A <>, 3 x 10-7 erg/cm. The cavity dimension is ap
proximately 1 Jl. 6,9 This gives an exchange energy 
on the order of 30 erg/cm3

• The magneto-elastic 
energy for YIG is on the order of (t ) BP / Jl . At 

P= 10 kbar this is 5X 104 erg/cm3
, which is better 

than three orders of magnitude larger than the ex
change energy. 

The demagnetizing energy is difficult to assess. 
The worst imaginable case is a spherical cavity 
in an otherwise uniform infinite magnetization 
field. The demagnetizing energy associated with 
this is 

Ed =t1f M!(a3/r3) [3cos2
(} -1] . 

For YIG this energy is about 104 erg/cm3
, which 

is about 20% of the magneto-elastic energy. In 
practice this is much too high. Such a drastic dif
ference between the exchange and demagnetizing 
energy would not occur since some form of domain 
structure would occur in order to reduce this dif
ference. 

The justification for ignoring the remaining ener
gy terms is not intended to be rigorous. It does 
suggest that, in the porous material problem, and 
in the case of severe internal strain, the magneto
elastic energy is an extremely significant, if not 
dominant, term. Since this work intends to filter 
out one term (the magneto-elastic energy) as re
sponsible for the a/R behavior in many magnetic 
materials, the remaining terms will not be con
sidered. 

The surviving energy expression includes the 
magneto-elastic energy and the interaction energy: 

3 BP a3 

E = 4"!l ? cos2 (1/! + e) - HMs cosl/! . (8) 

In magnetic equilibrium the variation of E with re
spect to the coordinate I/! must be a minimum. 
This gives 

3 B P a
3 

. 2('/' ) . ,I, 0 --- -3 sm <y +e -sm<y = . 
4 JlMs H r 

(9) 

In order to relate Eq. (9) to the macroscopic 
magnetization of the porous material, the compo
nent of magnetization in the direction of the applied 
field, Ms cosl/!, must be solved for and integrated 
over a volume determined by the porosity of the 
material. This is difficult in practice since Eq. 
(9), when unfolded in terms of cosl/! , yields a 
quartic equation. This problem is considered 
analytically in Sec. III and solved numerically in 
Sec. IV. 

III. ANAL YTiC CONSIDERATIONS 

Since interest lies in the approach to saturation, 
a series solution about the point p/ H = 0, if suffi
ciently well behaved, would be of value. A solution 
of this form is possible. Although cos l/! cannot be 
solved for explicitly in Eq. (9), impliCit derivatives 
of all orders can be obtained and solved for when 
evaluated at the point of expansion. The series 
takes the form 
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M 1 f /, a cosl/! I P 1 a cosl/! I P 2 ) 
M. =;; \1 + a (p/H) 0 li+"2 a(p/H)z oli + ... dV, 

v 

(10) 

where the spherical volume of integration is deter
mined by the porosity of the material. When eval
uated, the first few terms of the series are 

M 3 (BP \2 
9 ( BP)' 

M. = 1- 20 IJ.M.1iJ P -r 280 IJ.M.H P 

27 (BP \5 
+12320 IJ.Ms1i/ P+'" , (11) 

where P is the porosity of the material. This series 
predicts the magnetization curve for the porous 
material in the approach to saturation region. Ex
plicit dependence on external pressure, applied 
field, and porosity are shown. It is worth noting 
that a linear term does not appear. 

Comparison of this series with the Becker-Polley 
expression 

~= 1 - ~ >':Ji¥u 
M. 5 • ' 

(12) 

where >'s = - B/31J. in a magnetically isotropic med
ium, shows that they are quite similar in a region 
where the series can be apprOximated by 'the first 
nonvanishing term. This is mentioned for a com
parison of the previously predicted effect of interoal 
strain on one hand [see Eq. (2)] and the effect of in
duced strain in the present problem on the other. 

The behavior of this series can best be shown 
by considering a particular example. With the 
properties of YIG and a representative value of 
P/H=0.1, which was chosen from values of strain 

o 10 20 
p 
h 

30 

and applied field used in the work of Ref. 6, the 
resulting first few terms in the series are 

M/Ms = 1 - O. 032+0. 041 +0. 068 + .... 

This serves only to illustrate that the functional 
dependence of M/Ms on P/H in this region is not 
well represented by the first few terms in the 
series. In other words, the series does not con
verge sufficiently fast in this region of the mag
netization curve to make its use worthwhile. 

It can be shown that the subsequent functional de
pendence of M/ M. on P/B, following the initial 
quadratic behavior predicted by Eq. (11), is linear 
and has a slope given by 

dM/M._ B 
dP/H - - Y IJ.M. P , (13) 

where y is a constant independent of material prop
erties. This can be shown analytically, but the 
calculation represents a last-effort attempt to cir
cumvent the computer. Since a computer solution 
was ultimately required, this calculation is relegate< 
to the Appendix. This calculation is important, 
however, since it predicts the linear behavior in 
a limited region, whereas the numerical solution 
only strongly suggests it. A glance forward to the 
numerical solutions in Fig. 2 may help clarify the 
results of this section. 

IV, NUMERICAL SOLUTION 

The equilibrium relation (9) was solved for cosl/! 
and this term integrated over the required volume 
by conventional numerical techniques. Solutions 
for various porosities are shown in Fig. 2. The 
following observations are noted. 

40 50 

FIG. 2. Numerical solution of 
pressure-induced deviation from satura
tion magnetization. h=H/{JJ.M./B) is 
the reduced field. Solutions are for 
porosities of 0.01, 0.02, 0.03, and 
0.05. An estimate of the normalized 
slope, 'Y = slope/porosity, was approxi
mately 'Y = O. 21 for the four curves. 
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(i) There is initial quadratic behavior in extreme 
saturation as was expected from the series solution 
in Eq. (11). 

(ii) There is subsequent linear behavior down to 
almost i\ saturation as expected from Eq. (13). 

(iii) The slope in the linear region normalized by 
the porosity is independent of porosity, in accord
ance with Eq. (13). A value of y=O. 21, the con
stant in Eq. (13), is obtained from each curve in 
Fig. 2. 

(iv) For still lower magnetization the solution 
deviates from linearity and is asymptotic to h. 
This is a consequence of the chosen model but is 
physically realistic in that this would be the region 
where cavities would begin to interact and satura
tion effects would occur. 

V. EXPERIMENTAL COMPARISON 

Although the work of Wayne et al. 8 suggested this 
calculation, their data are not well suited for com
parison with these theoretical results for the follow
ing reasons. First, many of their data are not in 
the approach to the saturation region. Secondly, 
they tabulated M(P)j M(O) rather than M(p)1 M. for 
various values of P and 11. The difference, how
ever, is probably due to crystal anisotropy effects 
which have not been considered in this calculation 
in order to emphasize the induced strain contribu
tion. Since these are the only data available, this 
difficulty was ignored and experimental comparison 
was made which strongly supports the calculation, 
subject to this limitation. The following compari
sons were made: 

(i) The data were plotted as a function of piH. 
This was found to be a good variable. 

(ii) The behavior of YIG was the most carefully 
considered in Ref. 6. The magnetization curve 
for YIG was observed to have an initial quadratic 

0.4 0.45 0.5 

FIG. 3. Magnetization dependence 
on P/H for 0.02 porosity YIG. The 
pressure variation is from 0.2 to 
4 kbar ... and _ correspond to 8 and 
16 Oe. respectively . 

behavior followed by linear behavior as is seen in 
Fig. 3. 

(iii) Slopes in the linear region for the three 
materials considered (see Figs. 4-6) were ob
tained and normalized for material properties. 
The values obtained were y = 0.16, 0.24, and 0.26, 
respectively, for YIG, manganese-zinc ferrite, 
and nickel ferrite. This is to be compared with a 
value of 0.21 obtained from the numerical solution. 
This agreement is encouraging since the material 
properties and porOSities of the three ferrites 
considered are quite varied. 

VI. DISCUSSION 

A careful analysis of the calculation presented in 
Secs. ll-IV reveals that the linear behavior over a 
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10-2 Pp/H (kbor-G-1) 

FIG. 4. Magnetization dependence on Pp/H for 0.02 
porosity YIG. The pressure variation is from 2 to 20 
kbar. •• •••• and • correspond to external applied 
fields of 8, 16, 39, and 89 Oe, respectively. 
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• 
0.90 • ~ .... 
Q. • 
~ .B5 • • 

.BO 

• 
.75 

2 345 
10- 2 Pp/H (kbar - G-I ) 

FIG. 5. Magnetization for 0.075 por osity 
MnO. 62 ZnO.25Fe2. 130 4' The pressure variation is fr om 2 
to 12 kbar. ., ., and e correspond to external applied 
f ields of 35 , 70, and 290 Oe, respectively. 

limited region of the 1/H axis (see Fig. 2) is a 
consequence of the 1/".s dependence of the strain 
field in Eq. (4). This is shown in the Appendix. 
Since the primary goal is to suggest that this cal
culation is relevant to magnetic material where 
there is no external pressure but where there is 
inherent internal strain, some discussion of the 
form of this internal strain is necessary. In real 
material there are many defects around which in
ternal strain will occur. Cavities, inclusions, 
microcracks, dislocations, impurities, vacanCies, 
interstitial atoms, and grain boundaries will all 
contribute. Relevance of the present calculation 
to cases in which internal strain is present assumes 
that a significant portion of the internal strain falls 
off as 1/r 3 from the defect around which it origi
nates. Although the sources of internal strain are 
not completely understood, several examples may 
add credibility to this assumption. 

(a) A source of internal strain occurs when a 
material is cooled from some elevated temperature 
to room temperature. For instance, consider a 
spherical inclusion of radius a with a thermal 
expansion coefficient smaller than the surrounding 
medium. Thermal contraction will create a pres
sure PI within this inclusion. The strain field in
duced in the material surrounding the inclusion 
isll 

e lj = -!f ~ C,Xt - (i Ii) . 

Comparison with Eq. (4) reveals a similar 1/".s 
dependence. 

(b) Another source of internal strain occurs from 
material cold working. Plastic flow is believed to 
occur in local regions, viz. , dislocation slip bands. 

This leaves elastic strain locked into the material 
in other regions. A clear example of this occurs 
in surface working of cylindrical bars leaving a 
state of hoop stress in the region below the surface. 
Approximate this state of stress by a uniform pres
sure P and again image a spherical inclusion, of 
compressibility K~, in a medium of compressibility 
KT and shear modulus jJ.. The strain field is 

1 1 K~ - KT as (3XIXi ) 
eiJ=-3KTP(iIJ+31+}J..LK~PY3 - ~ -(iii • 

Equation (4) for a spherical pore is a limiting case 
of this solution. On a smaller scale the strain 
field about point defects is expected to have a 1/".s 
dependence. Although the strain field about a line 
dislocation does not have a 1/".s dependence, the 
strain field about a dislocation loop does. 13 In most 
cases the dominant contributors to internal strain 
are probably the macroscopic defects such as 
cavities or inclusions. 

This discussion is intended to suggest that in 
many cases considerable internal strain exhibits 
a 1/ r3 dependence about the source defect. If this 
is true, then results of this calculation qualitatively 
apply to material containing residual internal 
strain. 

This conclusion serves to explain several ob
servations regarding the approach to saturation 
which have not been understood. 

(i) It has been observed that, in Eq. (1), the 
quadratic term b/Ef is dominant for extremely high 
magnetic fields, while the linear term a/ H is 
dominant in intermediate fields. 14 Figure 2 shows 
that whether a local internal strain region contri-

,O~ 
• 0 

NICKEL FERRITE .9 
0 

• 0 
~ .B ~ 
~ 0 .... 
ii: • 
i .7 0 

0 

.6 

• 
• 5 

.3 .6 .9 1.2 1.5 

FIG. 6. Magnetization for 0.054 porosity (solid points ) 
and 0. 041 porosity (open points) nickel ferrite. The pres
sure variation is from 2 to 25 kbar. A, ., e, t , and x 
correspond to external applied fields of 45, 100, 325, 980, 
and 1960 Oe, respectively. 0 and Ocorrespond to 100 
and 350 Oe, respectively. 
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butes to quadratic or linear behavior depends on the 
magnitude of a/H, where a l is a measure of in
ternal strain. If H is sufficiently large, this quan
tity will be small for all a l and quadratic behavior 
observed, while if H is sufficiently small, many 
local strain regions will contribute to linear be
havior and the linear term will dominate . 

(ii) Similar variation of a and b with increased 
internal strain, as observed by Parfenov and Voro
shilov, is expected since local strain regions con
tributing to both linear and quadratic behavior 
would increase. 

(iii) Parfenov and Voroshilov also observed that 
a is proportional to Ms under temperature varia
tion in nickel. From this calculation, a is pro
portional to B/ J.l.M. as shown by Eq. (13), and Since, 
in nickel, B/ J.I. is proportional to ~,15 this behavior 
is expected. 

VII. CONCLUSION 

The primary conclusion is to suggest that the 
a/H term in the expression for the approach to 
saturation has been overemphasized. Its origin 
is in the residual internal strain of magnetic 
material and it has validity only over a limited 
region of the H axis. Secondary results are the 
model and calculation which determine the mag
netic behavior of porous magnetic material subject 
to hydrostatic pressure. It is worth mentioning 
that this technique suggests a method for controlled 
investigation of thp. effects of internal strain on ma
terial properties. 
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APPENDIX 

The following calculation will show that the sub
sequent functional dependence of M/ Ms on P/H, 
after the initial quadratic behavior, is linear with 
a slope given by Eq. (13). The magnetic equilib
rium relation, Eq. (9), can be written 

r 3 sin2(1/! +0) BP 
?=4" sin>Ir J.l.M.H 

(14) 

This, in principle, can be solved for cos1/!, giving 

cos1/! =g(;;h ,0) , 

*Research sponsored by the U. S. Air Force Office of 
Scientific Rese::.rch under Contract No. AFOSR-69-1758. 

tPresent address : stanford Research Institute, Menlo 
Park, Calif. 94025. 

where g is an unknown function, u = r/ a, and h 
= J.l.MsH/B is the reduced field. Averaging cos1/! 
over a spherical surface gives 

(cos1/!)av= m(u) =k(-:;h) , 
where k is another unknown function and m(u) is the 
average normalized magnetization in the direction 
of the applied field in a spherical shell at a radius 
r . This can be inverted to obtain 

u3 = (P/h)f(m) . (15) 

Againf is unknown. Equation (15) will be used in 
the following. First an expression for the macro
scopic magnetization in the porous material is re
quired. In terms of the proposed model in Sec. II 
this is 

or 

-=0 mYdr 
M 4 fro 

Ms 3 'TrrO 
a 

M l r
o/a -= 3p 

M. 1 

where p = a3 /ila is porosity. 
In anticipation of linear behavior consider 

dM / M 1T
o/a am I 2 =:iPih = 3p 1 ap/h. u du . 

The mathematical identity 

a;~ \.=- a:;h L ami 
au P/h 

with Eq. (15) gives 

~I __ f(m) 
ap/h • - 3u 2 

and therefore 

am I 
au P/h ' 

dM/M. = _ p r To/a f( ) am I d 
dP/ h Jt m a;; P/h u. 

In a region where the magneto-elastic energy dom
inates at the lower integration limit while the mag
netic energy dominates at the upper limit, the in
tegral transforms to 

dM/M. 11 
dP/h = - p f(m) dm . 

r/4 
(16) 

This shows the anticipated linear behavior which 
is expected to occur in some region of the P/h axis. 
Equation (16) is Eq. (13) with "y given by the integral 
expression. 
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